Abstract

Axisymmetric nonlinear finite-element analysis was used to simulate force-relaxation and creep data obtained during in vivo indentation of the residual limb soft tissues of six individuals with trans-tibial amputation [1]. The finite-element models facilitated estimation of an appropriate set of nonlinear viscoelastic material coefficients of extended James-Green-Simpson material formulation for bulk soft tissue at discrete, clinically relevant test locations. The results indicate that over 90% of the experimental data can be simulated using the two-term viscoelastic Prony series extension of James-Green-Simpson material formulation. This phenomenological material formulation could not, however, predict the creep response from relaxation experiments, nor the relaxation response from creep experiments [2-5]. The estimated material coefficients varied with test location and subject indicating that these coefficients cannot be readily extrapolated to other sites or individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.