Abstract

The present work deals with the problem of the nonlinear vibrations of multi-walled carbon nanotubes embedded in an elastic medium. A multiple-beam model is utilized in which the governing equations of each layer are coupled with those of its adjacent ones via the van der Waals interlayer force. The variational iteration method (VIM) is adopted to obtain the amplitude–frequency curves for large-amplitude vibrations of single-, double- and triple-walled carbon nanotubes. The influences of changes in material constants of the surrounding elastic medium and the geometric parameters on the vibration characteristics of multi-walled carbon nanotubes are investigated. The results from the VIM solution are compared and shown to be in excellent agreement with the available solutions from the open literature. The capability of the present analytical technique is clarified in terms of numerical accuracy as well as computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.