Abstract
A two dimensional model for the substrate inside a pocket of an active site of an enzyme is presented and investigated as a vibrational system. The parameters of the system are evaluated for α-chymotrypsin. In the case of internal resonance it is analytically and numerically shown that the energy concentrated on a certain degree of freedom might be several times larger than in the non-resonant case. Additionally, the system is driven by harmonic excitations and again energy due to nonlinear phenomena is redistributed inhomogeneously. These results may be of importance for the determination of the rates of catalytic events of substrates bound in pockets of active sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.