Abstract

The mathematical modeling for the nonlinear vibration analysis of a pre-stretched hyperelastic annular membrane under finite deformations is presented. The membrane is initially fixed along the inner boundary and then subjected to a uniform radial traction along its outer circumference and fixed along the outer boundary. The pre-stretched membrane in then subjected to a transversal harmonic pressure. The membrane material is assumed to be homogeneous, isotropic, and neo-Hookean. First, the solution of the radially stretched membrane is obtained analytically and numerically by the shooting method. The equations of motion of the stretched membrane are then obtained. By analytically and numerically solving the linearized equations of motion, the vibration modes and frequencies of the hyperelastic membrane are obtained, and these normal modes are used, together with the Galerkin method, to obtain reduced order models for the nonlinear dynamic analysis. A parametric analysis of the nonlinear frequency-amplitude relations, resonance curves, bifurcation diagrams and basins of attraction show the influence of the initial stretching ratio and membrane geometry on the type and degree of nonlinearity of the hyperelastic membrane under large amplitude vibrations. To check the accuracy of the reduced order models and the influence of the simplifying hypotheses on the results, the same problem is also analyzed using the finite element method. Excellent agreement is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.