Abstract

This paper examines the nonlinear vibration of a single conductor with Stockbridge dampers. The conductor is modeled as a simply supported beam and the Stockbridge damper is reduced to a mass–spring–damper–mass system. The nonlinearity of the system stems from the midplane stretching of the conductor and the cubic equivalent stiffness of the Stockbridge damper. The derived nonlinear equations of motion are solved by the method of multiple scales. Explicit expressions are presented for the nonlinear frequency, solvability conditions, and detuning parameter. The present results are validated via comparisons with those in the literature. Parametric studies are conducted to investigate the effect of variable control parameters on the nonlinear frequency and the frequency response curves. The findings are promising and open a horizon for future opportunities to optimize the design of nonlinear absorbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call