Abstract

This paper deals with geometrically nonlinear vibrations of sandwich beams with viscoelastic materials. For this purpose, a new finite element formulation has been developed, in which a zig-zag model is used to describe the displacement field. The viscoelastic behaviour is handled by using hereditary integrals and their relationships with complex moduli. An efficient solution procedure based on the harmonic balance method is also developed. To demonstrate its abilities, various problems of nonlinear vibrations of sandwich beams are considered. First, the results derived from the proposed approach are compared with those of nonlinear dynamic analyses using direct time integration and to experimental data. Then, the influence of the vibration amplitude on the damping properties of sandwich beams is investigated. The effect of an initial axial strain is also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.