Abstract

This paper investigates the nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory and Timoshenko beam theory. The piezoelectric nanobeam is subjected to an applied voltage and a uniform temperature change. The nonlinear governing equations and boundary conditions are derived by using the Hamilton principle and discretized by using the differential quadrature (DQ) method. A direct iterative method is employed to determine the nonlinear frequencies and mode shapes of the piezoelectric nanobeams. A detailed parametric study is conducted to study the influences of the nonlocal parameter, temperature change and external electric voltage on the size-dependent nonlinear vibration characteristics of the piezoelectric nanobeams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.