Abstract
A nonlinear steady state vibration analysis of a wide class of planestructures is analyzed. Both the finite element method and incrementalharmonic balance method are used. The usual beam element is adopted inwhich the nonlinear effect arising from longitudinal stretching has beentaken into account. Based on the geometric nonlinear finite elementanalysis, the nonlinear dynamic equations including quadratic and cubicnonlinearities are derived. These equations are solved by theincremental harmonic balance (IHB) method. To show the effectiveness andversatility of this method, some typical examples for a wide variety ofvibration problems including fundamental resonance, super- andsub-harmonic resonance, and combination resonance of plane structuressuch as beams, shallow arches and frames are computed. Most of theseexamples have not been studied by other researchers before. Comparisonwith previous results are also made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.