Abstract

The nonlinear free vibration of embedded nanotubes under longitudinal magnetic field is studied in this paper. The governing equation for the nanotube is formulated by employing Euler – Bernoulli beam model and the nonlocal strain gradient theory. The analytical expression of the nonlinear frequency of the nanotube is obtained by using Galerkin method and the equivalent linearization method with the weighted averaging value. The accuracy of the obtained solution has been verified by comparison with the published solutions and the exact solution. The influences of the nonlocal parameter, material length scale parameter, aspect ratio, diameter ratio, Winkler parameter and longitudinal magnetic field on the nonlinear vibration responses of the nanotubes with pinned-pinned and clamped-clamped boundary conditions are investigated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.