Abstract

This paper presents an analytical study on the nonlinear vibration of rectangular piezoelectric nanoplates resting on the Winkler foundation. The piezoelectric nanoplate is assumed to be simply supported on all four edges and is subjected to an external electric voltage and a uniform temperature rise. Based on von Karman nonlinear strain–displacement relations and the nonlocal constitutive relations, the nonlinear governing equations and corresponding boundary conditions are derived by employing Hamilton's principle. The Galerkin method is used to obtain the nonlinear ordinary equation, which is then solved by the direct integration method. An extensive parametric study is conducted to examine the effects of the nonlocal parameter, external electric voltage, temperature rise and Winkler parameter on the nonlinear vibration characteristics of piezoelectric nanoplates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.