Abstract
Analysis of the vibration of a shallow, simply supported, nonsymmetric unbalanced cross-ply laminated, circular cylindrical composite shell is presented. The subject is particularly relevant considering the widespread use of cylindrical shell structures in engineering applications. This research applies the discretized Lagrangian/method of multiple scales solution technique. The Donnell shallow shell strain-displacement relations and the single-mode displacement field from the linear eigenvalue problem are applied. The system Lagrangian is developed and integrated over the spatial domain and then substituted into Lagrange’s equation. The resulting equation of motion is a second-order temporally nonlinear ordinary differential equation in the form of the Duffing oscillator. The natural frequency, the coefficient of the cubic nonlinearity, and the strength of the nonlinearity are investigated. The method of multiple scales is applied to the nonlinear equation of motion in order to analyze the frequency response. Primary resonance, subharmonic resonance, and superharmonic resonance are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.