Abstract
This paper reports the result of an investigation into the nonlinear vibration frequencies of graphene/piezoelectric sandwich films under electrical loading based on nonlocal elastic theory by utilizing a global residual harmonic balance method. Based on the Galerkin method and global residual harmonic balance method, the nonlinear resonant frequencies of graphene/piezoelectric sandwich films under electric exciting loads are obtained with a set of factors: the ratio of the oscillating amplitude to the thickness of sandwich films, small scale effect, electric loading exerted on piezoelectric layer, mode number and size length. Results indicate that the electric exciting load enhances the nonlinear resonant frequency of graphene/piezoelectric sandwich films, the nonlinear resonant frequency decreases as the scale effect increases, the scale effect has a more significant effect on higher mode resonant frequency and linear resonant frequency, and the effect of scale on the nonlinear resonant frequency is independent on the electric exciting load and the boundary conditions exerted on the sandwich films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.