Abstract
Employing higher order shear deformation theory, geometric nonlinear theory, and Hamilton’s principle, a set of nonlinear governing equations for the functionally graded beams with surface-bonded piezoelectric layers is derived. Then, the negative velocity feedback algorithm coupling the direct and inverse piezoelectric effect is used to control the piezoelectric functionally graded beams actively. Using the finite difference method and Newmark method synthetically, the numerical solutions for the nonlinear dynamic equations of functionally graded beams with piezoelectric patches are obtained iteratively. In the numerical examples, the effects of the volume fraction exponent on the nonlinear dynamic responses and amplitude–frequency curves are investigated, and the active control responses of the functionally graded beams with piezoelectric layers under different control gains and volume fraction exponents are analyzed. Some meaningful solutions have been presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.