Abstract

In this paper, we report the use of the feedback signal of an ultrasonic fatigue system to dynamically deduce fatigue damage accumulation via changes in the nonlinear ultrasonic parameter. The applicability of this parameter in comparison to the resonant frequency for assessment of fatigue damage accumulation in a wrought aluminum alloy has been demonstrated, without the need for coupling fluids or independent generation of incident ultrasonic waves. The ultrasonic nonlinearity increased and the resonant frequency of the system decreased with initiation and propagation of the major crack. The nonlinear ultrasonic parameter shows greater sensitivity to damage accumulation than the resonant frequency. The number of cycles for crack propagation, estimated based on the changes in the nonlinear ultrasonic parameter, is in very good agreement with calculated crack growth rates based on the fractography studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.