Abstract

Two novel anthracene derivatives containing 4-vinylpyridine (FPEA) and 2-vinylpyridine (TPEA) poly(methyl methacrylate) films are prepared on quartz glass substrates. Their nonlinear absorption properties are investigated by using a 120-fs, 800-nm Ti:sapphire femtosecond pulsed laser operating at a 1-kHz repetition rate. The unique nonlinear absorption properties of these new compounds are observed by utilizing a Z-scan system. These two-photon absorption (TPA) properties are proven by the two-photon fluorescence excited at 800 nm. The FPEA and TPEA films have nonlinear TPA coefficients of 0.164 and 0.148 cm/GW and the TPA cross sections of 3.345 × 10-48 and 3.081 × 10-48 cm4·s/photon, respectively. The influence of the chemical structures on the nonlinear TPA properties of the compounds is also discussed. The highly nonlinear TPA activities of the films implied that the new anthracene derivatives are suitable materials with promising applications in super-high-density three-dimensional data storage and nano- or microstructure fabrication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call