Abstract

A time crystal is a macroscopic quantum system in periodic motion in its ground state. In our experiments, two coupled time crystals consisting of spin-wave quasiparticles (magnons) form a macroscopic two-level system. The two levels evolve in time as determined intrinsically by a nonlinear feedback, allowing us to construct spontaneous two-level dynamics. In the course of a level crossing, magnons move from the ground level to the excited level driven by the Landau-Zener effect, combined with Rabi population oscillations. We demonstrate that magnon time crystals allow access to every aspect and detail of quantum-coherent interactions in a single run of the experiment. Our work opens an outlook for the detection of surface-bound Majorana fermions in the underlying superfluid system, and invites technological exploitation of coherent magnon phenomena – potentially even at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.