Abstract
We consider the two-dimensional water-wave problem with a general non-zero vorticity field in a fluid volume with a flat bed and a free surface. The nonlinear equations of motion for the chosen surface and volume variables are expressed with the aid of the Dirichlet-Neumann operator and the Green function of the Laplace operator in the fluid domain. Moreover, we provide new explicit expressions for both objects. The field of a point vortex and its interaction with the free surface is studied as an example. In the small-amplitude long-wave Boussinesq and KdV regimes, we obtain appropriate systems of coupled equations for the dynamics of the point vortex and the time evolution of the free surface variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.