Abstract

Abstract. Land use conversions can strongly impact soil organic matter (SOM) storage, which creates paramount opportunities for sequestering atmospheric carbon into the soil. It is known that land uses such as annual cropping and afforestation can decrease and increase SOM, respectively; however, the rates of these changes over time remain elusive. This study focused on extracting the kinetics (k) of turnover rates that describe these long-term changes in soil C storage and also quantifying the sources of soil C. We used topsoil organic carbon density and δ13C isotopic composition data from multiple chronosequences and paired sites in Russia and United States. Reconstruction of soil C storage trajectory over 250 years following conversion from native grassland to continual annual cropland revealed a C depletion rate of 0.010 yr−1 (first-order k rate constant), which translates into a mean residence time (MRT) of 100 years (R2≥0.90). Conversely, soil C accretion was observed over 70 years following afforestation of annual croplands at a much faster k rate of 0.055 yr−1. The corresponding MRT was only 18 years (R2=0.997) after a lag phase of 5 years. Over these 23 years of afforestation, trees contributed 14 Mg C ha−1 to soil C accrual in the 0 to 15 cm depth increment. This tree-C contribution reached 22 Mg C ha−1 at 70 years after tree planting. Over these 70 years of afforestation, the proportion of tree C to whole-soil C increased to reach a sizable 79 %. Furthermore, assuming steady state of soil C in the adjacent croplands, we also estimated that 45 % of the prairie C existent at the time of tree planting was still present in the afforested soils 70 years later. As an intrinsic property of k modeling, the derived turnover rates that represent soil C changes over time are nonlinear. Soil C changes were much more dynamic during the first decades following a land use conversion than afterwards when the new land use system approached equilibrium. Collectively, results substantiated that C sequestration in afforested lands is a suitable means to proactively mitigate escalating climate change within a typical person's lifetime, as indicated by MRTs of a few decades.

Highlights

  • The global effects of escalating climate change are in part driven by land use choices

  • This study focused on extracting the kinetics (k) of turnover rates that describe these long-term changes in soil C storage and quantifying the sources of soil C

  • Reconstruction of soil C storage trajectory over 250 years following conversion from native grassland to continual annual cropland revealed a C depletion rate of 0.010 yr−1, which translates into a mean residence time (MRT) of 100 years (R2 ≥ 0.90)

Read more

Summary

Introduction

The global effects of escalating climate change are in part driven by land use choices. Additional functions by tree vegetation include improving air quality, enhanced microclimate, and erosion control (Sauer et al, 2007; Hernandez-Ramirez et al, 2012; Chendev et al, 2015b). Establishing agroforestry practices such as shelterbelt systems within annual croplands can provide a balance between continual food production and tree benefits with only a fraction of the landscape occupied by trees (Amadi et al, 2016; Dhillon and Van Rees, 2017)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call