Abstract
Distinct types of self-similar periodic waveforms of the generalized coupled nonlinear Schrödinger equations with varying nonlinearity, gain or loss and group velocity dispersion are obtained. The coupled system applies to the description of light pulse propagation in an inhomogeneous two mode optical fiber. The self-similar solutions are expressed in terms of Jacobian elliptic functions, thus enabling us to identify various kinds of propagating self-similar soliton pulses in their long-wave limit. It is found that these periodic structures exhibit a linear chirp property, which can be utilized to achieve efficient pulse compression and amplification. As a physically relevant application, we discuss the nonlinear tunneling process of these linearly chirped self-similar periodic waves through both dispersion and nonlinear barriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.