Abstract

We present the results of a derivation of the fluctuation energy transport matrix for the two-field Hasegawa-Wakatani model of drift wave turbulence. The energy transport matrix is derived from a two-scale direct interaction approximation assuming weak turbulence. We examine different classes of triad interactions and show that radially extended eddies, as occurs in penetrative convection, are the most effective in turbulence spreading. We show that in the near-adiabatic limit internal energy spreads faster than the kinetic energy. Previous theories of spreading results are discussed in the context of weak turbulence theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.