Abstract

Nonlinear traveling waves that are precursors to laminar-turbulent transition and capture the main structures of the turbulent buffer layer have recently been found to exist in all the canonical parallel flow geometries. We study the effect of polymer additives on these "exact coherent states" (ECS), in the plane Poiseuille geometry. Many key aspects of the turbulent drag reduction phenomenon are found, including: delay in transition to turbulence; drag reduction onset threshold; diameter and concentration effects. Furthermore, examination of the ECS existence region leads to a distinct prediction, consistent with experiments, regarding the nature of the maximum drag reduction regime. Specifically, at sufficiently high wall shear rates, viscoelasticity is found to completely suppress the normal (i.e. streamwise-vortex-dominated) dynamics of the near wall region, indicating that the maximum drag reduction regime is dominated by a distinct class of flow structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.