Abstract
Nonlinear transmission lines (NLTLs) are typically driven by pulse forming lines (PFLs) or Marx generators to generate high repetition rate, high power microwaves (HPMs) with fewer auxiliary systems than conventional sources. This paper reports the development of an even more compact HPM system that utilizes a composite-based hybrid NLTL as the PFL and HPM generator in a single device. We designed the following three different combinations of nickel zinc ferrite (NZF) and barium strontium titanate (BST) inclusion volume loads in a polydimethylsiloxane host material to provide magnetic field dependent permeability and electric field dependent permittivity, respectively: 25% NZF, 10% BST/15% NZF, and 15% BST/10% NZF. By constructing the NLTL in a coaxial geometry, this device uses the capacitance and length of the NLTL to generate a fast rise-time high voltage pulse with microwave oscillations that occurred both during and after the pulse after exceeding a threshold charging voltage. The output frequency of the NLTLs ranged from 950MHz to 2.2GHz during the pulse for all volume loadings and was 1GHz after the pulse for the 10% BST/15% NZF and 15% BST/10% NZF volume loadings. The oscillations generated after the pulse were much higher in amplitude and achieved 160 kW at a 15 kV charging voltage for the 15% BST/10% NZF composite-based NLTL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.