Abstract

We present a generalized shear deformation theory in combination with isogeometric (IGA) approach for nonlinear transient analysis of smart piezoelectric functionally graded material (FGM) plates. The nonlinear transient formulation for plates is formed in the total Lagrange approach based on the von Karman strains, which includes thermo-piezoelectric effects, and solved by Newmark time integration scheme. The electric potential through the thickness of each piezoelectric layer is assumed to be linear. The material properties vary through the thickness of FGM according to the rule of mixture and the Mori–Tanaka schemes. Various numerical examples are presented to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.