Abstract

This work aims at investigating the nonlinear transient response of fluid-conveying pipes made of graphene nanoplatelet (GPL)-reinforced composite (GPLRC) under blast loads and in a thermal environment. A modified Halpin–Tsai model is used to approximate the effective Young’s modulus of the GPLRC pipes conveying fluid; the mass density and Poisson’s ratio are determined by using the Voigt model. A slender Euler–Bernoulli beam is considered for modeling the pipes conveying fluid. The vibration control equation of the GPLRC pipes conveying fluid under blast loads is obtained by using Hamilton’s principle. A set of second-order ordinary differential equations are obtained by using the second-order Galerkin discrete method and are solved by using the adaptive Runge–Kutta method. Numerical experiments show that GPL distribution and temperature; GPL weight fraction; pipe length-to-thickness ratio; flow velocity; and blast load parameters have important effects on the nonlinear transient response of the GPLRC pipes conveying fluid. The numerical results also show that due to the fluid–structure interaction, the vibration amplitudes of the GPLRC pipes conveying fluid decay after the impact of blast loads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.