Abstract
A synthetic jet actuator (SJA)-based control method is developed, which is rigorously proven to achieve accurate aircraft trajectory tracking control while simultaneously regulating limit cycle oscillations (LCO) in aircraft wings. To achieve the result, innovative tracking error system development is utilized along with a robust-inverse control structure. The robust-inverse control structure is utilized to compensate for the parametric uncertainty and nonlinearity inherent in the SJA mathematical model without the use of adaptive parameter estimation or function approximation schemes. After recasting the dynamics in a form amenable to control design, a nonlinear control law is developed, which achieves asymptotic trajectory tracking in the presence of external disturbances and structural disturbances due to LCO. A Lyapunov-based stability analysis is utilized to prove semi-global asymptotic trajectory tracking in the presence of LCO disturbances and parametric uncertainty in the SJA actuator model. Numerical simulation results are provided to demonstrate the capability of the proposed SJA-based control method to achieve simultaneous trajectory tracking and LCO regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.