Abstract

AbstractTime-dependent density functional theory, TDDFT, studies of the ionization of CO2 and N2, by intense laser pulses peak intensities (3.50×1014, 1.40×1015, 2.99×1015 and 5.59×1015 W/cm2) at 800 nm (ω = 0.0584 a.u.) are presented in the nonlinear nonpertubative regime using the LB94 potential which reproduces the ionization potential of our systems more accurately, without significant increase in computational costs over a local-density approximation. Special emphasis is placed on elucidating molecular orbital (MO) orientation and various peak intensities effects on the ionization processes. The results reveal that molecular orbital ionizations are strongly sensitive to their symmetry (MO shape), the induced dipole coupling between molecular orbitals, and the laser intensities. Notably, we found that with a proper choice of the laser intensity (3.5×1014 W/cm2), the sensitivity is strong enough so that the nature and symmetry of the highest occupied molecular orbital can be directly probed and visualized from the angular dependence of laser induced ionization. At higher intensities, ionization is found to occur also from inner orbitals, thus complicating imaging of simple orbitals.KeywordsTDDFTmolecular orbital ionization probabilitytotal molecular ionization yieldmolecular orbital symmetrylasers intensities

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.