Abstract

A pneumatic-type floating breakwater is simulated in the time–domain to evaluate wave blocking and wave energy absorption. For accurate nonlinear time–domain simulation, a fully nonlinear numerical wave tank (NWT) technique has been used. In the present study, the NWT for the pneumatic breakwater is extended to the case of restrained body motion using the mode-decomposition method in the acceleration potential field. In particular, the effect of individual body motion coupled with pneumatic damping in the chamber is investigated for the case in which the breakwater is only allowed to move one degree-of-freedom: for instance, using a heave-only allowable body. The present results are compared with various motion cases as well as a box-shaped breakwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.