Abstract

A three-wave interaction model with quadratic nonlinearities and linear growth/decay rates is used to investigate the occurrence of drift-wave turbulence driven by pressure gradients in the edge plasma of a tokamak. Model parameters are taken from a typical set of measurements of the floating electrostatic potential in the tokamak edge region. Some aspects of the temporal dynamics exhibited by the three-wave interaction model are investigated, with special emphasis on a chaotic regime found for a wide range of the wave decay rate. An intermittent transition from periodic to chaotic behavior is observed and some statistical properties, such as the interburst and laminar length interval durations, are explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call