Abstract

The three-dimensional flow in a lid-driven cuboid is investigated numerically. The geometry is an extension to three dimensions of the lid-driven square cavity by translating the two-dimensional lid-driven cavity parallel to the third orthogonal direction. The incompressible Navier–Stokes equations are discretized by a pseudospectral Chebyshev-collocation method. The singularities caused by the discontinuous velocity boundary conditions are reduced by including asymptotic analytical solutions in the solution ansatz. The flow is computed for Reynolds numbers above the critical onset of Taylor–Görtler vortices. Nonlinear Taylor–Görtler cells are calculated for periodic and for realistic no-slip endwall conditions. For periodic boundary conditions the bifurcation is either sub- or supercritical, depending on the wavenumber. The limiting tricritical case arises near the critical wavenumber of the linear-stability problem. On the other hand, no-slip endwall conditions have a significant effect on the supercritical three-dimensional flow. In agreement with recent experimental results we find that Taylor–Görtler vortices are suppressed near no-slip endwalls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.