Abstract

A new higher-order shear deformation zig-zag theory enriched by polyconvex strain cover functions is proposed for predicting the nonlinear stability characteristics of thermo mechanically loaded carbon nanotube-reinforced composite (CNTRC) laminated cylindrical shells surrounded by elastic foundations. The thermomechanical properties of composite laminated shells are considered to be temperature-dependent and are evaluated using the extended rule of mixture method. The von Kármán strain field is adopted to describe the structural nonlinearity of the composite laminated shells. The proposed higher-order shear deformation zig-zag theory employs polyconvex strain variables to represent the displacement field of the composite shell in a unified form. The nonlinear behavior is modeled using the stability equations in axisymmetric and non-axisymmetric buckling. The validity of the present analytical model is confirmed by comparing the computed results with those solutions available in the literature. The nonlinear behavior of CNTRC laminated shells with different geometrical dimensions, temperature gradients, and distribution patterns is investigated. Moreover, the stress analysis of CNTRC cylindrical shells under thermal environments is performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.