Abstract

Nonlinear thermal convection in heat and mass transfer mechanism of dissipating Jeffrey liquid is investigated. The impact of cross diffusion and convective conditions are also accounted. Before integrating pertinent partial differential equations; a set similarity variables are employed to reduce them into multidegree ordinary differential equations. The validation process comprised a comparison with existing data, reaching an excellent agreement. Later, the influence of distinct physical parameters on diverse flow characteristics are comprehensively discussed and analyzed. It is established that the nonlinear convection is favourable for the escalation of the thickness of momentum boundary layer. Further, the convective conditions are used as controlling constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.