Abstract

One of the main obstacles in achieving stable, efficient operation at the cyclotron harmonics in a gyrotron is mode competition with parasitic modes at the fundamental frequency. In this article, the nonlinear dynamics of mode interactions in such a system are studied using a multifrequency, time-dependent model. The results of numerical simulations for a second harmonic gyrotron are presented by considering two starting scenarios: (a) fast voltage rise or an instant turn-on case, and (b) slow voltage rise case. For the first case, it is demonstrated that for a certain range of operating parameters, the presence of a parasitic mode at the fundamental can be helpful in the excitation of the second harmonic operating mode. In the second case, it is found that the unstable operating region increases with the value of the rise time constant of the electrode voltages. Stable, efficient gyrotron operation at the second harmonic is demonstrated using the numerical study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call