Abstract

By exploiting the interesting trait of graphene to have electrically tunable first- and third-order conductivities besides its capability to support plasmonic resonances at terahertz frequencies, here, through the nonlinear finite-difference time-domain numerical technique we developed, we demonstrate a noticeable improvement in the conversion efficiency of third-harmonic generation (THG) from a graphene microribbon array by more than five orders of magnitude compared to an infinite graphene sheet, under normal illumination of terahertz waves. As the Fermi level and period length of the ribbon array increase, the transmission obviously manifests a blue shift but denotes a red shift with an increase in ribbon width. The quality factor of resonance (and so the THG efficiency) also shows improvement with an increase in graphene Fermi level, carrier mobility and period length and is degraded by an increase in ribbon width. Generating new frequencies, terahertz signal processing, spectroscopy and so on are among the plethora of valuable potential applications envisioned to be developed based on the findings reported here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call