Abstract
Patterns pervade the world of nature as well as the world of the intellect. In the biological realm we are quite familiar with the stripes on a zebra, the spots on a leopard, and the colorful markings of certain birds, fish, and butterflies. In the physical world we may have noticed the pretty fringe patterns which occur when thin films of oil spread on a road surface or the wonderful shapes that ice crystals can assume when trees are coated after an ice storm. If we go into a wallpaper shop, we can be overwhelmed by the wide variety of patterns available, the patterns created by someone’s artistic imagination. If we talk to a scientist we will soon find that his or her goal in life is usually to discover (impose?) some underlying pattern to the phenomena under investigation and then attempt to mathematically model that pattern. In this section, we shall look at some attempts to understand or create patterns through the use of nonlinear modeling and concepts. Our first example is from the world of chemistry.KeywordsSolitary WaveCellular AutomatonSolitary Wave SolutionOptical SolitonBright SolitonThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.