Abstract
Normal fuzzy CMAC neural network performs well for nonlinear systems identification because of its fast learning speed and local generalization capability for approximating nonlinear functions. However, it requires huge memory and the dimension increases exponentially with the number of inputs, and it is difficult for its static structure to model a dynamic system. In this paper, we use two types of recurrent techniques for fuzzy CMAC to overcome the above problems. The new CMAC neural networks are named recurrent fuzzy CMAC (RFCMAC) which add feedback connections in the inner layers (local feedback) or the output layer (global feedback). The corresponding learning algorithms are presented that have time-varying learning rates, the stabilities of the neural identifications are proven.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.