Abstract
An attempt has been made in this paper to model a nonlinear system using a Hammerstein model. The Hammerstein model considered in this paper is a functional link artificial neural network (FLANN) in cascade with an adaptive infinite impulse response (IIR) filter. In order to avoid local optima issues caused by conventional gradient descent training strategies, the model has been trained using a cuckoo search algorithm (CSA), which is a recently proposed stochastic algorithm. Modeling accuracy of the proposed scheme has been compared with that obtained using other popular evolutionary computing algorithms for the Hammerstein model. Enhanced modeling capability of the CSA based scheme is evident from the simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.