Abstract

Most of the nonlinear system identification techniques described in the existing literature required force and response information at all excitation degrees-of-freedom (DOFs). For cases, where the excitation comes from base motion, those methods cannot be applied as it is not feasible to obtain the measurements of motion at all DOFs from an experiment. The objective of this research is to develop the methodology for the nonlinear system identification of continuous, multimode, and lightly damped systems, where the excitation comes from the moving base. For this purpose, the closed-form expression for the equivalent force also known as the pseudo force from the measured data for the base-excited structure is developed. A hybrid model space is developed to find out the nonlinear restoring force at the nonlinear DOFs. Once the nonlinear restoring force is obtained, the nonlinear parameters are extracted using “multilinear least square regression” in a modal space. A modal space is chosen to express the direct and cross-coupling nonlinearities. Using a cantilever beam as an example, the proposed methodology is demonstrated, where the experimental setup, testing procedure, data acquisition, and data processing are presented. The example shows that the method proposed here is systematic and constructive for nonlinear parameter identification for base-excited structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.