Abstract
A nonlinear system identification methodology based on the principle of harmonic balance and bifurcation theory techniques like center manifold analysis and normal form reduction, is presented for multi-degree-of-freedom systems. The methodology, called Bifurcation Theory System IDentification, (BiTSID), is a general procedure for any nonlinear system that exhibits periodic limit cycle response and can be used to capture the bifurcation behavior of the nonlinear systems. The BiTSID methodology is demonstrated on an experimental system single-degree-of-freedom system that deals with self-excited motions of a fluid-structure system with a sub-critical Hopf bifurcation. It is shown that BiTSID performs excellently in capturing the stable and unstable limit cycles within the experimental regime. Its performance outside the experimental regime is also studied. The application of BiTSID to experimental multi-degree-of-freedom systems has also been very successful. However in this study only the results of the single-degree-of-freedom system are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.