Abstract

Solvent-based post combustion capture (PCC) is a well-developed technology for CO2 capture from power plants and industry. A reliable model that captures the dynamics of the solvent-based capture process is essential to implement suitable control design. Typically, first principle models are used, however they usually require comprehensive knowledge and deep understanding of the process. System identification approach is adopted to obtain a model that accurately describes the dynamics between key variables in the process. The nonlinear auto-regressive with exogenous (NARX) inputs model is employed to represent the relationship between the input variables and output variables as two Multiple-Input Single-Output (MISO) sub-models. The forward regression with orthogonal least squares (FROLS) algorithm is implemented to select an accurate model structure that best describes the dynamics within the process. The prediction performance of the identified NARX models is promising and shows that the models capture the underlying dynamics of the CO2 capture process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.