Abstract

This study presents an adaptive neural fuzzy network (ANFN) controller based on a modified differential evolution (MODE) for solving control problems. The proposed ANFN controller adopts a functional link neural network as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN controller is a nonlinear combination of input variables. The proposed MODE learning algorithm adopts an evolutionary learning method to optimize the controller parameters. For design optimization, a new criterion is introduced. A hardware-in-the loop control technique is developed and applied to the designed ANFN controller using the MODE learning algorithm. The proposed ANFN controller with the MODE learning algorithm (ANFN-MODE) is used in two practical applications-the planetary-train-type inverted pendulum system and the magnetic levitation system. The experiment is developed in a real-time visual simulation environment. Experimental results of this study have demonstrated the robustness and effectiveness of the proposed ANFN-MODE controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.