Abstract

We study nonlinear propagation of electromagnetic waves in two closely spaced graphene layers and demonstrate that this double-layer graphene waveguide can operate as an efficient nonlinear optical coupler for both continuous plasmons and for subwavelength spatial optical plasmon solitons. We analyze the nonlinearity-induced effects of light localization and symmetry breaking in such a graphene coupler, and predict that the interlayer power-dependent coupling provides a mechanism for optical beam control and manipulation at realistic input power levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.