Abstract

Nonlinear switching of ultrashort pulses in two-core, three-core, and four-core optical fibers is analyzed theoretically by solving a set of generalized, linearly coupled nonlinear Schrodinger equations. The analysis takes into account the effects of the coupling coefficient dispersion (or intermodal dispersion) in the fiber, which have been overlooked in previous studies of three-core and four-core fibers. It is shown that the coupling coefficient dispersion can break up ultrashort pulses over a short length of a multicore fiber and consequently deteriorate the switching characteristics. In general, the coupling coefficient dispersion leads to an increase in the switching power and a reduction in the switching contrast and the sharpness of the switching transition. The three-core fiber is more tolerant to the coupling coefficient dispersion and therefore the preferred choice for the implementation of an all-fiber nonlinear optical switch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.