Abstract

We have previously proposed that survival curves for cells of murine NFSa fibrosarcomas after exposure to fast neutrons might demonstrate curvature when the neutron doses reach a level high enough to cure the fibrosarcomas. We report here that this is the case. Murine NFSa fibrosarcomas growing in the hind legs of syngeneic mice were exposed to either gamma rays or fast neutrons. The tumors were removed and retransplanted into fresh recipients to obtain 50% tumor cell doses, from which the dose-cell survival relationship was constructed. Survival curves showed continuous bending down to 10(-7), and were well fitted using the linear-quadratic model. The alpha and beta values for neutrons were larger than those for gamma rays. When the surviving fractions at experimental TCD50 doses were calculated using these values, comparable figures were obtained for neutrons and gamma rays. The RBEs for neutrons were comparable for the TCD50 and TD50 assays. Neutron RBE was independent of dose within a range of 5-28 Gy. The capacity of the tumors to repair the damage caused by large doses of neutrons was identical to that for small doses of neutrons, indicating that cells retained the capacity to repair neutron damage irrespective of the size of the dose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call