Abstract

We derive an asymptotic equation that describes the propagation of weakly nonlinear surface waves on a tangential discontinuity in incompressible magnetohydrodynamics. The equation is similar to, but simpler than, previously derived asymptotic equations for weakly nonlinear Rayleigh waves in elasticity, and is identical to a model equation for nonlinear Rayleigh waves proposed by Hamilton et al. The most interesting feature of the surface waves is that their nonlinear self-interaction is nonlocal. As a result of this nonlocal nonlinearity, smooth solutions break down in finite time, and appear to form cusps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.