Abstract

To describe the evolution of fully nonlinear surface gravity waves in a linear shear current, a closed system of exact evolution equations for the free surface elevation and the free surface velocity potential is derived using a conformal mapping technique. Traveling wave solutions of the system are obtained numerically and it is found that the maximum wave amplitude for a positive shear current is much smaller than that in the absence of any shear while the opposite is true for a negative shear current. The new evolution equations are also solved numerically using a pseudo-spectral method to study the Benjamin–Feir instability of a modulated wave train in both positive and negative shear currents. With a fixed wave slope, compared with the irrotational case, the envelope of the modulated wave train grows faster in a positive shear current and slower in a negative shear current.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call