Abstract

The complex connective tissue structure of muscle and tendon suggests that forces from two parts of a muscle may not summate linearly. This study measured the nonlinear summation of force (F(nl)) in whole cat soleus during isometric and ramp movements. In six anesthetized cats, the soleus was attached to a servomechanism to control muscle length and record force. The ventral roots were divided into two bundles, each innervating about half the soleus; thus the two parts could be stimulated alone or together. In all experiments, F(nl) was small (<6% of maximum tetanic tension). Peak F(nl) occurred during changes in muscle force, either as a result of imposed muscle movement or the onset or offset of a stimulus train. The data were fit to a model in which both parts of the muscle were assumed to stretch to a common elasticity. The servomechanism was programmed to compensate for reduced stretch of the common elasticity during partial compared with whole muscle activation. These compensatory movements showed how the model could account for most, but not all, of F(nl).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.