Abstract
In the next chapter, we’ll apply the Krasnoselskii-Rabinowitz bifurcation theorem in a very specific way: to the Euler buckling problem. The buckling problem belongs to an important class of problems in ordinary differential equations called nonlinear Sturm-Liouville problems. To begin this chapter I’ll describe the Euler buckling problem and place it in the more general differential equation context. Then I’ll apply the bifurcation theorem to the general class of nonlinear Sturm-Liouville problems, to obtain a tool that I’ll be able to use in the next chapter for the buckling problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.