Abstract

In this work, a simple stabilized central difference technique is discussed, to analyse nonlinear models. The proposed technique is unconditionally stable for linear systems and it provides enhanced stability features for nonlinear applications. The proposed method stands as a direct single step procedure, avoiding any iterative computations when solving nonlinear models; thus, it is very efficient. In addition, it is extremely accurate, providing much reduced period elongation and amplitude decay errors, compared to standard methods. The present work also introduces a criterion for updating the nonlinear system matrices, significantly reducing the computational complexity of the simulation and enhancing the efficiency of the technique. Numerical results are presented along the manuscript, illustrating the performance and accuracy of the proposed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.