Abstract
AbstractThis paper investigates the uncertainty of physically non‐linear problems by modeling the elastic random material parameters as stochastic fields. For its stochastic discretization a polynomial chaos (PC) is used to expand the coefficients into deterministic and stochastic parts. Then, from experimental data for an adhesive material the distribution of the random variables, i.e. Young's modulus E(θ), the static yield point Y0 and the nonlinear hardening parameters q and b, are known. In the numerical example the distribution of the stresses obtained by the PC based SFEM and Monte Carlo simulation is compared. (© 2015 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.