Abstract

We report on experimental measurements and quantitative analyses of nonlinear dynamic characteristics in ultimately thin nanomechanical resonators built upon single-layer, bilayer, and trilayer (1L, 2L, and 3L) molybdenum disulfide (MoS2) vibrating drumhead membranes. This synergistic study with calibrated measurements and analytical modeling on observed nonlinear responses has led to the determination of nonlinear damping and stiffness coefficients at cubic and quintic orders for these two-dimensional (2D) resonators operating in the very high frequency (VHF) band (up to ∼90 MHz). We find that the quintic force can be ∼20% of the Duffing force at larger amplitudes, and thus, it generally cannot be ignored in a nonlinear dynamics analysis. This study provides the first quantification of nonlinear damping and frequency detuning characteristics in 2D semiconductor nanomechanical resonators and elucidates their origins and dependency on engineerable parameters, setting a foundation for future exploration and utilization of the rich nonlinear dynamics in 2D nanomechanical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.